M317 ec 2 Assignment \#2

1. Under what conditions is $\sup (A)$ not an accumulation point for A ?

If $\alpha=\sup (A)$ is an isolated point of A (in which case, it must belong to A)
For example $\alpha=3=\sup \{1,2,3\}$ is not an accumulation point of the set.
2. Give an example of a set with the following properties or explain why no such set is possible:
a) an infinite set with no accumulation points
\mathbb{N} the natural numbers has no acc pts
b) a bounded set with no accumulation points
$A=\{1,2,3\}$ is bounded and has no acc pts
c) an interval (a, b) containing only irrational numbers not possible, between any two real numbers $a<b$, there is an irrational
d) a set $A \subset R$ that contains its sup but not its inf $(1,2) \cup\{10\}$ contains its sup, 10, but not its inf, 1
e) a finite set that does not contain its sup
not possible, the sup of a finite set is just the largest number in the set.
3. Show that every irrational number is an accumulation point of R

Let $x=$ irrational number and let $\varepsilon>0$ denote an arbitrary positive number. Then by the Archimedes principle, there exists a rational number, r , between $x-\varepsilon$ and $x+\varepsilon$. Since r is rational, it does not equal x so $\forall \varepsilon>0, \exists r, r \in \grave{N}_{\varepsilon}(x)$.

