M317 ec 2 Assignment #2

1. Under what conditions is sup(A) not an accumulation point for A?

If $\alpha = \sup(A)$ is an isolated point of A (in which case, it must belong to A)

For example $\alpha = 3 = \sup\{1, 2, 3\}$ is not an accumulation point of the set.

2. Give an example of a set with the following properties or explain why no such set is possible:

- a) an infinite set with no accumulation points \mathbb{N} the natural numbers has no acc pts
- b) a bounded set with no accumulation points $A = \{1, 2, 3\}$ is bounded and has no acc pts
- c) an interval (a,b) containing only irrational numbers not possible, between any two real numbers a < b, there is an irrational
- d) a set $A \subset R$ that contains its sup but not its inf $(1,2) \cup \{10\}$ contains its *sup*, 10, but not its inf, 1
- e) a finite set that does not contain its sup

not possible, the sup of a finite set is just the largest number in the set. 3. Show that every irrational number is an accumulation point of R

Let x = irrational number and let $\varepsilon > 0$ denote an arbitrary positive number. Then by the Archimedes principle, there exists a rational number, r, between $x - \varepsilon$ and $x + \varepsilon$. Since *r* is rational, it does not equal *x* so $\forall \varepsilon > 0$, $\exists r, r \in \mathring{N}_{\varepsilon}(x)$.